98 research outputs found

    Soil fertility effect on water productivity of maize and potato in Abay Basin

    Get PDF

    Land Preparation Methods and Soil Quality of a Vertisol Area in the Central Highlands of Ethiopia

    Get PDF
    The industrialization of agriculture led to societal concerns for environmental protection and food quality in developed countries. On the other hand, the need for increased agricultural productivity to address the persistent poverty and food insecurity in developing countries is intensified. Thus, improved management systems to meet the double objectives of increased productivity and sustained environmental quality are increasingly required. The assessment of soil quality and productivity are among the means of monitoring the various management systems to achieve the goals. Among the interrelated definitions formulated for soil quality, a committee established by Soil Science Society of America for the same purpose defined it as the capacity of soil to function within natural and managed ecosystem boundaries to sustain plant and animal productivity, maintain or enhance soil, water and air quality and support human health and habitation. The central idea in most of the definitions is the capacity of the soil to function. The capacity of a soil to function depends on its inherent properties derived from its genesis and the dynamic properties resulting from the prevailing management systems. Most of the hitherto soil quality assessments considered agricultural production as the major management goal. As this study was conducted in the highlands of Ethiopia where food security remains a basic challenge, the primary management goal could not be different. Shortage and fragmentation of land driven by population pressure have become issues of concern in the area. With a continually dwindling national land-holding average of only one ha per household, farmers struggle to produce enough to feed their families. Since the possibility of expanding agricultural land is limited, increased production is realistic only from higher productivity per unit land per unit time. Covering about 8 million ha, Vertisols are among the high potential soils, where significant increase in productivity is likely. However, their productivity is constrained by their physical and hydrological properties, manifested by their hardness when dry and their stickiness when wet, impeding land preparation. The traditional management systems led neither to increased productivity nor to enhanced soil quality. Thus, the need for alternative technologies is paramount. Despite a concerted effort during the last two decades to develop improved technologies for the soils, land preparation for agricultural productivity and sustaiability remains a major challenge. In addition to technical difficulties associated with their nature and deep-rooted poverty and illiteracy, lack of farmers? participation is believed to have hampered the development and adoption of robust technologies. The challenge facing the soil management research in Ethiopia is thus double fold: development of technologies that swiftly increase agricultural production and ensure judicious use of the land resources. Farmers are the ultimate decision makers on their plots, at least in Ethiopia, often irrespective of the consequences of their decisions. Simple technologies are required to manipulate their decisions in favour of the desired goals. This requires development of technologies that fit into their aspiration, tradition and socio-cultural values with their participation in the generation and evaluation of the technologies. This study was to identify alternative land preparation methods for increased productivity and economic profitability, while maintaining or enhancing the soil quality of the Vertisols. The hypothesis tested was that the alternative land preparation methods improve soil productivity and maintain or enhance soil quality. Three alternatives, Broad Bed and Furrow (BBF), Green Manure (GM) and Reduced Tillage (RT) with the traditional method, Ridge and Furrow (RF) were compared for 6 years, setting crop yield, economic profitability, and soil erosion and soil quality as performance indicators. This on station experiment was complemented by a participatory assessment at a small watershed scale. The objectives of the latter were identification of local soil functions, definition of soil quality concepts, and identification of soil quality indicators and evaluation of the soils for the major functions. Land preparation methods influence soil functions through their effects on soils qualities. Among the soil physical quality indicators considered, GM increased aggregate stability and reduced surface crust strength due to its increased OM content and microbial activities. While RT led to least penetration resistance, infiltration, water-holding capacity, and moisture content were less sensitive to the treatments. The chemical characteristics and plant nutrients response was not consistent indicating the need of longer time for the effects to show a clear trend. Organic carbon and MBC content of the soil increased due to RT and GM, but the increment was not proportional leading to lower microbial quotient. This indicates SOM build up with a long-term soil quality improvement. The effect on runoff was inconsistent during the first three years (1998-2000), but BBF and RT slightly increased. In 2001 and 2002, BBF drained 67% and 54 %, respectively, of the seasonal rainfall as runoff while RT routed 61% and 53%. There is a non significant tendency of increased soil and nutrient losses from BBF and RT due to the increased runoff. BBF significantly increased the grain yield of lentils by 59% (1.03 t ha-1 to 1.63 t ha-1) compared to the control. Similarly, RT resulted in the highest grain yield of wheat (1.86 t ha-1) and tef (1.34 t ha-1). Economically, BBF is the most profitable option for lentils with 65% increase in total gross margin while RT resulted in 11% and 8% increase in gross margin of wheat and tef, respectively, as compared to the control. The soil quality index was not significantly affected by the land preparation methods. Nevertheless, GM has shown a slight enhancement with the highest SQI, followed by BBF and RT. Thus, the land preparation methods are favoured in order of GM> BBF> RT> RF, for soil quality. The relative enhancement of soil quality by GM was linked mainly to its increased Corg content. The performance indicators (productivity, economic profitability, soil conservation and soil quality) are also affected differently. A matrix ranking of the effects on the indicators showed that none of treatments is superior for all the indicators. The average of the ranks (no weight attached) showed that BBF was the most favourable followed by RT. Therefore, the methods are preferred in the order of BBF> RT>GM=RF considering the overall indicators. The superiority of BBF and RT corresponds to their productivity and economic benefits. For soil quality and erosion control, GM is a favourable option. However, as its economic benefit was low, further improvement is required. In addition, lack of fast growing legumes tolerant to both shortage and excess water, failure of the short rain for planting, cost of chopping and incorporating the cover crops and the possible need of special equipment for incorporating may hinder its wider application and hence need further investigation. The success of the alternatives depends on the farmers? capacity and willingness to invest. As the issues of soil quality and land degradation are more of societal concerns than of the individual farmers, external technical and financial incentives are desirable to enhance their capacity and to initiate their interest. Institutional and policy issues influencing agriculture and natural resource management and uncertainties like variation in weather deserve judicious consideration.Die Industrialisierung der Landwirtschaft hat in den EntwicklungslĂ€ndern zu einer öffentlichen Besorgnis in Bezug auf den Umweltschutz und die NahrungsmittelqualitĂ€t gefĂŒhrt. Andererseits wĂ€chst die Notwendigkeit die landwirtschaftliche ProduktivitĂ€t zu steigern, um der andauernden Armut und ErnĂ€hrungsunsicherheit zu begegnen. Daher bedarf es umso mehr verbesserter Anbausysteme, um beide Ziele, Steigerung der ProduktivitĂ€t und Erhaltung der UmweltqualitĂ€t, zu sichern. Die Erfassung von BodenqualitĂ€t und ProduktivitĂ€t ist ein Instrument, um die LeistungsfĂ€higkeit von unterschiedlichen Managementsystemen im Hinblick auf die Zielerreichung zu ĂŒberprĂŒfen. Eine der mannigfaltigen Definitionen fĂŒr BodenqualitĂ€t wurde von einem Kommittee der Soil Science Society of America aufgestellt. Danach ist BodenqualitĂ€t die FĂ€higkeit des Bodens sowohl in natĂŒrlichen als auch in bewirtschafteten Ökosystemen seine Funktionen zu erfĂŒllen, welche sind: Pflanzen-und TierproduktivitĂ€t zu erhalten, Erhaltung oder Erhöhung von Boden- Wasser- und LuftqualitĂ€t und UnterstĂŒtzung der Gesundheit und des Wohnraums von Menschen. Die FĂ€higkeit des Bodens seine Funktionen zu erfĂŒllen hĂ€ngt von seinen spezifischen Eigenschaften ab, die sich aus seiner Enstehung und den dynamischen Eigenschaften, die sich aus der Nutzung ergeben, ableiten. Die meisten der bisher gemachten BodenqualitĂ€tserhebungen betrachteten die landwirtschaftliche Nutzung als Hauptnutzungsziel. In der vorliegenden Untersuchung im Hochland Äthiopiens, wo ErnĂ€hrungssicherheit eine grundlegende Herausforderung ist, kann das primĂ€re Nutzungsziel kein anderes sein. Knappheit und StĂŒckelung der FlĂ€che, ausgelöst durch den Bevölkerungsdruck, sind zu den Hauptproblemen in diesem Gebiet geworden. Bei einer stĂ€ndig abnehmenden mittleren FlĂ€che von nur einem ha pro Familie (ein mittlerer Haushalt hat sieben Personen), mĂŒssen die Bauern darum kĂ€mpfen, genug Nahrungsmittel fĂŒr ihre Familien zu produzieren. Da die Möglichkeiten der Ausdehnung der landwirtschaftlichen NutzflĂ€che begrenzt sind, ist eine Produktionssteigerung nur ĂŒber eine höhere FlĂ€chenproduktivitĂ€t zu realisieren. Die Vertisole reprĂ€sentieren in dieser Region eine FlĂ€che von 7,6 Mio Hektar und gehören zu jenen Böden mit hohem Ertragspotential, auf denen in dieser Region eine Erleichterung des Drucks auf die fragileren Böden durch signifikante Ertragsteigerungen möglich wĂ€re. Jedoch ist deren ProduktivitĂ€t eingeschrĂ€nkt durch ihre physikalischen und hydrologischen Eigenschaften, insbesondere ihre HĂ€rte bei Trockenheit und ihre PlastizitĂ€t bei SĂ€ttigung, die eine Bodenbearbeitung erschweren. Die traditionellen Nutzungssysteme fĂŒhrten weder zu erhöhter ProduktivitĂ€t noch zu verbesserter BodenqualitĂ€t. Alternative Technologien sind deshalb von außerordentlicher Bedeutung. Trotz konzertierter Anstrengungen wĂ€hrend der letzten beiden Jahrzehnte verbesserte Technologien fĂŒr die Böden zu entwickeln, bleibt eine auf hohe ProduktivitĂ€t und Nachhaltigkeit ausgerichtete Bodenbearbeitung die grĂ¶ĂŸte Herausforderung. Neben den technischen Schwierigkeiten, die mit der Natur der Böden zusammenhĂ€ngen, der tiefen Armut und des Analphabetismus, wird die mangelnde Bereitschaft der Bauern zur Zusammenarbeit als Hemmschuh fĂŒr die Entwicklung robuster Technologien angesehen. Das Bodenmanagement begegnet daher in Äthiopien einer zweifachen Herausforderung: Entwicklung von Technologien, die möglichst schnell die landwirtschaftliche Produktion erhöhen und gleichzeitig die sachgerechte Nutzung der Landressourcen sichern. Bauern sind die letztendlichen EntscheidungstrĂ€ger auf ihren Feldern. Allerdings, zumindest in Äthiopien, ohne RĂŒcksicht auf die Konsequenzen. Einfache Technologien sind nötig, um ihre Entscheidungen zugunsten der gewĂŒnschten Ziele zu lenken. Oft adoptieren sie Methoden, die ihren WĂŒnschen, Traditionen, soziokulturellen Werten sowie ihren primĂ€ren Managementzielen entsprechen. Daher mĂŒssen sie an der Entwicklung und Bewertung neuer Technologien beteiligt werden. Die vorliegende Untersuchung hatte zum Ziel, alternative Bodenbearbeitungsmethoden zu identifizieren, die in der Lage sind ProduktivitĂ€t des Bodens und ökonomische RentabilitĂ€t zu steigern und gleichzeitig die BodenqualitĂ€t der Vertisole zu erhalten bzw. zu erhöhen. Es wurde die Hypothese getestet, dass die Bodenbearbeitungsmethoden die ProduktivitĂ€t des Bodens erhöhen und die BodenqualitĂ€t erhalten bzw. fördern. Drei Alternativen, Broad Bed and Furrow (BBF), Green Manure (GM) und Reduced Tillage (RT) wurden mit der traditionellen Methode (Ridge and Furrow RF) ĂŒber sechs Jahre hinweg verglichen, wobei PflanzenproduktivitĂ€t, ökonomische RentabilitĂ€t, Bodenerosion und BodenqualitĂ€t als Indikatoren fĂŒr die Zielerreichung gewĂ€hlt wurden. Diese Untersuchung auf Feldebene, die auf einer Versuchsstation durchgefĂŒhrt wurde, wurde ergĂ€nzt durch eine partizipative Erhebung auf der Einzugsgebietsebene. Die Ziele dieser Studie waren die Identifizierung von lokalen Bodenfunktionen, Definition von BodenqualitĂ€tskonzepten, die Identifizierung von BodenqualitĂ€tsindikatoren und die Bewertung der Böden in Bezug auf ihre Hauptfunktionen. Bodenbearbeitungmethoden beeinflussen Bodenfunktionen durch ihre Auswirkungen auf die Bodeneigenschaften. Unter den bodenphysikalischen Indikatoren erhöhte GM die AggregatstabilitĂ€t und verminderte die OberflĂ€chenverkrustung durch die Erhöhung des Gehalts an organischer Substanz und der mikrobiellen AktivitĂ€t. Andererseits fĂŒhrte RT zum geringsten Eindringwiderstand. Infiltration, WasserhaltefĂ€higkeit und Wassergehalt waren weniger sensitiv gegenĂŒber den Behandlungen. Die chemischen Eigenschaften und PflanzennĂ€hrstoffe reagierten nicht eindeutig. LĂ€ngere BeobachtungszeitrĂ€ume scheinen nötig, um klare Trends aufzuzeigen. Der Gehalt an organischem Kohlenstoff und mikrobieller Biomasse im Boden wurde durch RT und GM erhöht, allerdings waren die Zunahmen nicht proportional, so dass der mikrobielle Quotient kleiner wurde. Das deutet auf den Aufbau von organischer Bodensubstanz mit Langzeiteffekt hin. Die Auswirkung auf den OberflĂ€chenabfluss war nicht konsistent wĂ€hrend der ersten drei Jahre (1998-2000), wurde aber durch BBF und RT leicht erhöht. In den Jahren 2001 und 2002 wurde in BBF 67 bzw. 54% des Niederschlags wĂ€hrend der Vegetationsperiode als OberflĂ€chenabfluss abgefĂŒhrt, und bei RT 61 bzw. 53%. Es gab eine nicht signifikante Tendenz zu ansteigendem Boden- und NĂ€hrstoffverlust unter BBF und RT aufgrund eines erhöhten OberflĂ€chenabflusses. BBF erhöhte signifikant die KornertrĂ€ge von Linsen um 59% (von 1.03 auf 1.63 t ha-1 im Vergleich zur Kontrolle). Ähnlich verursachte RT den höchsten Kornertrag von Weizen (1.86 t ha-1) und Tef (1.34 t ha-1). Ökonomisch gesehen war BBF am rentabelsten fĂŒr Linsen mit einer 65% igen Steigerung des Deckungsbeitrags wĂ€hrend RT im Vergleich zur Kontrolle nur 11 und 8% höhere DeckungsbeitrĂ€ge fĂŒr Weizen und Tef lieferte. Der BodenqualitĂ€tsindex (SQI) wurde durch die Bodenbearbeitungsmethode nicht signfikant beeintrĂ€chtigt. Trotzdem zeigte GM den höchsten SQI gefolgt von BBF und RT. Daher ergibt sich fĂŒr die Bewertung der Bodenbearbeitungsmaßnahmen in Bezug auf die BodenqualitĂ€t folgende Reihenfolge GM>BBF>RT>RF. Die relative Zunahme der BodenqualitĂ€t durch GM war hauptsĂ€chlich an die Erhöhung des Gehalts an Corg gebunden. Die GĂŒteindikatoren (ProduktivitĂ€t, RentabilitĂ€t, Bodenerhaltung und BodenqualitĂ€t) wurden unterschiedlich stark beeintrĂ€chtigt. Eine Rangfolgenmatrix der Auswirkungen auf die Bewertungsindikatoren zeigte, dass keine der Behandlungen sich fĂŒr alle Indikatoren als die Beste erwies. Bildet man das Mittel der Rangfolgen (ohne Gewichtungsfaktoren) zeigt sich BBF als die gĂŒnstigste Bodenbearbeitungsmethode, gefolgt von RT. Insgesamt ergibt sich, wenn man alle Indikatoren berĂŒcksichtigt, als Bewertungsrangfolge BBF>RT>GM=RF. Die Überlegenheit von BBF und RT entspricht ihrer höheren ProduktivitĂ€t und RentabilitĂ€t. BezĂŒglich BodenqualitĂ€t und Erosionskontrolle ist GM die gĂŒnstigste Alternative. Da jedoch ihr ökonomischer Verlust hoch war, sind weiter Verbesserungen dieser Technologie, wie Verminderung der technischen KomplexizitĂ€t, der Kosten und den damit verbundenen Risiken nötig, um ihre Vorteile zu erhöhen. Zudem können folgende Probleme ihre weitere Verbreitung hindern: der Mangel an schnellwachsenden Leguminosen, die sowohl tolerant gegenĂŒber WasserĂŒberschuß als auch Wassermangel sind, Ausfall der FrĂŒhregen zur Aussaat, die Kosten fĂŒr das Abschlagen und Einarbeiten der Bodendecker und der eventuelle Bedarf an speziellen GerĂ€ten fĂŒr die Einarbeitung. Die Verbesserung dieser Technologie sollte daher Gegenstand weiterer Untersuchungen sein. Der Erfolg der alternativen Bodenbearbeitungsmaßnahmen hĂ€ngt von der KapazitĂ€t und Bereitschaft der Bauern zu Investitionen ab. Da in Äthiopien BodenqualitĂ€t und Landdegradierung eher fĂŒr die Gesellschaft als fĂŒr den einzelnen Bauern ein Grund zur Sorge sind, sollten externe technische und finanzielle Anreize in ErwĂ€gung gezogen werden, um die KapazitĂ€t der Bauern zu erhöhen und ihr Interesse zu wecken. Institutionelle und politische Aspekte, welche die Landwirtschaft und die Bewirtschaftung der natĂŒrlichen Ressourcen beeinflussen sowie andere Unsicherheiten, wie beispielsweise die VariabilitĂ€t der Witterung, sollten nicht außer-acht gelassen werden

    Enhancing farming system water productivity through alternative land use and improved water management of rainfed agriculture in Vertisol areas

    Get PDF
    Waterlogged Vertisols are amongst the high potential soils where management interventions could result in positive impacts. This study utilized soil, climate and crop and livestock productivity data and models to demonstrate intensification strategies which increase crop–livestock system productivity and to understand the effects of alternative land use and water management options on water productivity in the Vertisols areas. The areas have been classified into three slope classes including areas where artificial drainage is not feasible, where Broad Bed and Furrows (BBF) can be used to drain the excess water and naturally drained areas, represented by areas with 0–2%, 2–5% and over 5% slope steepness, respectively. Early planting of wheat (Triticum spp) using BBF on drainable areas and rice (Oryza sativa) or grasspea (Lathyrus sativus) on the flat areas were compared with the traditional practices. Yield and biomass data were obtained from research stations in the area whilst the effective rainfall and crop water requirement were estimated using CROPWAT Model. The feed value of the native grass and crop straw was estimated based on previous works. With respect to effective rainfall, the water productivity increase due to BBF over the control ranged from 5 to 200%, with an average increase of 57%. Despite higher water consumption of the rice, feeding its residues to livestock enhanced the overall economic water productivity of the system over the natural grazing or grasspea cultivation. Consequently, use of BBF enables growing high value or food crops of choice that may be sensitive to waterlogging whilst tolerant crops can be grown on flat lands allowing utilization of the full growing period. Coupled with livestock integration into the system, the alternatives can enhance food production and resource use efficiency from these ‘marginal’ areas

    Impacts of improving water management of smallholder agriculture in the Upper Blue Nile Basin

    Get PDF
    With its total area of about 200,000 square kilometers (km2), which is 20% of the country’s land mass, and accommodating 25% of the population, the Upper Blue Nile Basin (Abbay) is one of the most important river basins in Ethiopia. About 40% of agricultural products and 45% of the surface water of the country are contributed by this basin. However, the characteristic-intensive biophysical variation, rapid population growth, land degradation, climatic fluctuation and resultant low agricultural productivity and poverty are posing daunting challenges to sustainability of agricultural production systems in the basin. This calls for technological interventions that not only enhance productivity and livelihoods in the basin, but also bring about positive spillover effects on downstream water users. In this study, the farming systems in the basin have been stratified and characterized; and promising agricultural water management technologies, which may upgrade the productivity of smallholder rainfed agriculture while improving downstream water quality, have been identified. As a consequence, supplementary and full irrigation using rainwater and drainage of waterlogged soils are recognized as being among the promising agricultural water management technologies that can be easily scaled-up in the basin. The magnitude of the impacts of these technologies on the productivity of the upstream farming systems and the concomitant effects on the downstream water flow and quality are under investigation, assuming an assortment of scenarios.Length: pp.7-21River basinsFarming systemsCerealsRainfed farmingWater harvestingIrrigated farming

    Improved water and land management in the Ethiopian highlands: its impact on downstream stakeholders dependent on the Blue Nile; Intermediate Results Dissemination Workshop February 5-6, 2009, Addis Ababa, Ethiopia

    Get PDF
    River basin management, Watershed management, Farming systems, Water balance, Reservoirs, Water supply, Irrigation requirements, Irrigation programs, Simulation models, Sedimentation, Rainfall-Runoff relationships, Erosion, Soil water, Water balance, Soil conservation, Institutions, Organizations, Policy, Water governance, International waters, Institutional and Behavioral Economics, Land Economics/Use, Resource /Energy Economics and Policy,

    Economics of selected water control technologies and their successful use: The case of Ethiopia

    Get PDF
    Using a production function, marginal productivity of farm inputs and benefit-cost analysis, we explore the economics of selected water control technologies. From the production function, all farm inputs, including irrigation water is found to have a significant and positive effect on yield. Marginal value products of farm inputs are found to be positive but their magnitudes differ by type of control structures, crop type, agro-ecology and regions. The net present values of all water control structures are positive. There is a favorable precondition for sustainable adoption of these controls technologies and institutionalizing some sort of cost recovery schemes. The level of education, the ratio of irrigated land allocated to irrigated annuals and perennials, access to markets and off-farm income are found to have significant effect on successful use of these control structures. Recommendations and policy implications are drawn accordingly.Keywords: water control, NPV, production function, instrumental variables regression; Africa

    Identifying, cataloguing, and mapping soil and agronomic data in Ethiopia.

    Get PDF
    Agriculture is the basis of livelihood and economic growth in developing regions. However, this sector has “so many problems” and deserves the best solution! The Government of Ethiopia and its various sectors, supported by the international research centers and development organizations, are demonstrating their eagerness to embrace new developments and technological advances. Efforts are underway to “modernize” the agricultural sector and partner organizations are working to assist in building capacity in data collection, management, access, and analytics. In this regard, GIZ is supporting an effort by the International Center for Tropical Agriculture (CIAT) (now part of the Alliance of Bioversity International and CIAT) and other partners to bring soil and agronomic data together, conduct smart analysis in order to support informed decision-making. As part of this exercise, the Coalition of the Willing (CoW), individuals and institutions that are willing to share data and facilitate data access, was established in 2018. To facilitate the process, the CoW created a taskforce composed of senior experts in the fields of soil and agronomy. Among its various ventures, key intervention of the taskforce, which become a basis for other forthcoming activities, was the effort to identify, catalogue, and map soil and agronomic data in the country. Mapping the "data ecosystem” (identifying where the major soil and agronomic data are located and characterizing them in terms of pre-defined attributes) can form important basis to bring those data and run innovative analytics to generate information that can facilitate informed decision-making. This report highlights the efforts made to identify, catalogue, and map soil and agronomic data as well as corresponding metadata from relevant public, international, federal, and regional research and development institutions in Ethiopia. We hope that the report can facilitate data access and sharing thus saving duplication of efforts to collect redundant data that could be used for other innovative things
    • 

    corecore